边缘计算广泛用于视频分析。为了减轻准确性和成本之间的固有张力,已经提出了各种视频分析管道,以优化GPU在边缘节点上的使用。但是,我们发现,由于视频内容的变化,在管道的不同位置的视频内容变化,亚次采样和过滤,因此为边缘节点提供的GPU计算资源通常被低估了。与模型和管道优化相反,在这项工作中,我们使用非确定性和分散的闲置GPU资源研究了机会数据增强的问题。具体而言,我们提出了一个特定于任务的歧视和增强模块以及一种模型感知的对抗性训练机制,提供了一种以准确有效的方式识别和转换特定于视频管道的低质量图像的方法。在延迟和GPU资源限制下,进一步开发了多个EXIT模型结构和资源感知调度程序,以做出在线增强决策和细粒度的执行。多个视频分析管道和数据集的实验表明,通过明智地分配少量的空闲资源,这些框架上倾向于通过增强而产生更大的边际收益,我们的系统将DNN对象检测准确性提高了7.3-11.3 \%,而不会产生任何潜行成本。
translated by 谷歌翻译
眼底摄影是诊断和监测眼部疾病的诊所的常规检查。但是,对于白内障患者,底眼图像始终会遭受由云晶状体引起的质量降解。降解阻止了眼科医生或计算机辅助系统可靠的诊断。为了提高临床诊断的确定性,已经提出了恢复算法来提高眼底图像的质量。不幸的是,这些算法的部署仍然存在挑战,例如收集足够的培训数据和保存视网膜结构。在本文中,为了规避严格的部署要求,从共享相同结构的合成数据中开发出了针对白内障底底图像的结构一致的恢复网络(SCR-NET)。白内障仿真模型首先是设计用于收集由白内障底面图像共享相同结构的合成性白内障集(SC)的。然后从SCS中提取高频组件(HFC)以约束结构一致性,从而强制执行SCR-NET中的结构保留。该实验证明了SCR-NET与最新方法和后续临床应用的比较中的有效性。该代码可从https://github.com/liamheng/arcnet-medical-image-enhancement获得。
translated by 谷歌翻译
基于方面的情绪分析(ABSA)任务由三个典型的子特点组成:术语术语提取,意见术语提取和情感极性分类。这三个子组织通常是共同执行的,以节省资源并减少管道中的错误传播。但是,大多数现有联合模型只关注编码器共享的福利在子任务之间共享,但忽略差异。因此,我们提出了一个关节ABSA模型,它不仅享有编码器共享的好处,而且还专注于提高模型效率的差异。详细地,我们介绍了双编码器设计,其中一对编码器特别侧重于候选方识对分类,并且原始编码器对序列标记进行注意。经验结果表明,我们的拟议模型显示了鲁棒性,并显着优于前一个基准数据集的先前最先进。
translated by 谷歌翻译
培训语义分割模型需要大量的精细注释数据,使得很难快速适应不满足这种情况的新型类。很少拍摄的分割(FS-SEG)用许多约束来解决这个问题。在本文中,我们介绍了一种新的基准,称为广义的少量语义分割(GFS-SEG),分析了同时分割了具有很少的例子和基本类别的新型类别的泛化能力。第一研究表明,以前的代表性最先进的FS-SEG方法在GFS-SEG中缺乏,并且性能差异主要来自FS-SEG的约束设置。为了制作GFS-SEG易旧的,我们设置了GFS-SEG基线,可以在原始模型上实现不良性能的体现性能。因此,由于上下文对于语义分割是必不可少的,我们提出了显着提高性能的上下文感知原型学习(CAPL)1)利用支持样本的共同发生,以及2)将上下文信息动态地丰富到分类器,对每个查询映像的内容进行调节。两项贡献都是通过实验证明具有实际实际优点的贡献。对Pascal-VOC和Coco的广泛实验表现出CAPL的有效性,CAPL通过实现竞争性能来概括为FS-SEG。代码将公开可用。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译